Hydrogen when was it discovered




















Despite billions of years of countless stars fusing hydrogen into helium it still makes up 75 per cent of the detectable content of the universe. This light, colourless, highly flammable gas carries on its uniqueness by having the only named isotopes and some of the best known at that , deuterium with an added neutron in the nucleus and tritium with two neutrons. Hydrogen is an essential for life, the universe and just about everything. Life, in fact, is multiply dependent on it. Without hydrogen we wouldn't have the Sun to give us heat and light.

There would be no useful organic compounds to form the building blocks of life. And that most essential substance for life's existence, water, would not exist. It's only thanks to a special trick of hydrogen's that we can use water at all. Hydrogen forms weak bonds between molecules, latching onto adjacent oxygen, nitrogen or fluorine atoms.

It's these hydrogen bonds that give water many of its properties. If they didn't exist, the boiling point of water would be below degrees Celsius. Liquid water would not feature on the Earth. Hydrogen was the unwitting discovery of Paracelsus, the sixteenth century Swiss alchemist also known as Theophrastus Philippus Aureolus Bombastus von Hohenheim.

He found that something flammable bubbled off metals that were dropped into strong acids, unaware of the chemical reaction that was forming metal salts and releasing hydrogen, something a number of others including Robert Boyle would independently discover over the years.

However, the first person to realize hydrogen was a unique substance, one he called 'inflammable air,' was Henry Cavendish, the noble ancestor of William Cavendish who later gave his name to what would become the world's most famous physics laboratory in Cambridge. Between the s and s, Henry not only isolated hydrogen, but found that when it burned it combined with oxygen or 'dephlogisticated air' as it was called to produce water.

These clumsy terms were swept aside by French chemist Antoine Lavoisier who changed chemical naming for good, calling inflammable air 'hydrogen', the gene, or creator, of hydro, water. Because hydrogen is so light, the pure element isn't commonly found on the Earth.

It would just float away. The prime components of air, nitrogen and oxygen, are fourteen and sixteen times heavier, giving hydrogen dramatic buoyancy. This lightness of hydrogen made it a natural for one of its first practical uses - filling balloons.

No balloon soars as well as a hydrogen balloon. The first such aerial vessel was the creation of French scientist Jacques Charles in , who was inspired by the Montgolfier brothers' hot air success a couple of months before to use hydrogen in a balloon of silk impregnated with rubber.

Hydrogen seemed to have a guaranteed future in flying machines, reinforced by the invention of airships built on a rigid frame, called dirigibles in the UK but better known by their German nickname of Zeppelins, after their enthusiastic promoter Graf Ferdinand von Zeppelin. These airships were soon the liners of the sky, carrying passengers safely and smoothly across the Atlantic.

But despite the ultimate lightness of hydrogen it has another property that killed off airships - hydrogen is highly flammable. The destruction of the vast zeppelin the Hindenburg, probably by fire caused by static electricity, was seen on film by shocked audiences around the world.

The hydrogen airship was doomed. Yet hydrogen has remained a player in the field of transport because of the raw efficiency of its combustion. Many of NASA's rockets, including the second and third stages of the Apollo Program's Saturn V and the Space Shuttle main engines, are powered by burning liquid hydrogen with pure oxygen.

More recently still, hydrogen has been proposed as a replacement for fossil fuels in cars. Here it has the big advantage over petrol of burning to provide only water. No greenhouse gasses are emitted. The most likely way to employ hydrogen is not to burn it explosively, but to use it in a fuel cell, where an electrochemical reaction is used to produce electricity to power the vehicle.

Not everyone is convinced that hydrogen fuelled cars are the future, though. We would need a network of hydrogen fuel stations, and it remains a dangerous, explosive substance.

At the same time, it is less efficient than petrol, because a litre of petrol has about three times more useful energy in it than a litre of liquid hydrogen if you use compressed hydrogen gas that can go up to ten times more. The other problem is obtaining the hydrogen. It either comes from hydrocarbons, potentially leaving a residue of greenhouse gasses, or from electrolysing water, using electricity that may not be cleanly generated. But even if we don't get hydrogen fuelled cars, hydrogen still has a future in a more dramatic energy source - nuclear fusion, the power source of the sun.

Fusion power stations are tens of years away from being practical, but hold out the hope of clean, plentiful energy. However we use hydrogen, though, we can't take away its prime position. It is numero uno, the ultimate, the king of the elements. So it's the most abundant element, is essential for life on earth, fuels space rockets and could resolve our fossil fuel dependents. You can see why Brian Clegg classes hydrogen as number one. Now next week we meet the time keeper of the periodic table.

One current use is in atomic clocks, though rubidium is considered less accurate than caesium. The rubidium version of the atomic clock employs the transition between two hyperfine energy states of the rubidium isotope. These clocks use microwave radiation which is tuned until it matches the hyperfine transition, at which point the interval between wave crests of the radiation can be used to calibrate time itself.

Until then I'm Meera Senthilingam, thanks for listening and goodbye. Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.

There's more information and other episodes of Chemistry in its element on our website at chemistryworld. Click here to view videos about Hydrogen. View videos about. Help Text. Learn Chemistry : Your single route to hundreds of free-to-access chemistry teaching resources. We hope that you enjoy your visit to this Site. We welcome your feedback. Data W. Haynes, ed. Version 1. Coursey, D. Schwab, J. Tsai, and R. Dragoset, Atomic Weights and Isotopic Compositions version 4.

Periodic Table of Videos , accessed December The hydrogen, Bain demonstrated, did not cause the catastrophic fire but rather the combination of static electricity and highly flammable material on the skin of the airship. The funding encompasses over 30 lead organizations and more than partners selected through a competitive review process. In the future, water will replace fossil fuels as the primary resource for hydrogen. Hydrogen will be distributed via national networks of hydrogen transport pipelines and fueling stations.

Hydrogen energy and fuel cell power will be clean, abundant, reliable, affordable and an integral part of all sectors of the economy in all regions of the U. Department of Energy www. On our planet, hydrogen occurs mainly in combination with oxygen and water, as well as in organic matter such as living plants, petroleum and coal, Los Alamos reports. Robert Boyle produced hydrogen gas in while he was experimenting with iron and acids, but it wasn't until that Henry Cavendish recognized it as a distinct element, according to Jefferson Lab.

The element was named hydrogen by the French chemist Antoine Lavoisier. Hydrogen has three common isotopes: protium, which is just ordinary hydrogen; deuterium, a stable isotope discovered in by Harold C. Urey; and tritium, an unstable isotope discovered in , according to Jefferson Lab. The difference between the three isotopes lies in the number of neutrons each of them has. Hydrogen has no neutrons at all; deuterium has one, while tritium has two neutrons, according to Lawrence Berkeley National Laboratory.

Deuterium and tritium are used as fuel in nuclear fusion reactors, according to Los Alamos. Composed of a single proton and a single electron , hydrogen is the simplest and most abundant element in the universe. Hydrogen is the raw fuel that most stars 'burn' to produce energy. The same process, known as fusion, is being studied as a possible power source for use on earth. The sun's supply of hydrogen is expected to last another 5 billion years.

Hydrogen is a commercially important element. Large amounts of hydrogen are combined with nitrogen from the air to produce ammonia NH 3 through a process called the Haber process. Hydrogen is also added to fats and oils, such as peanut oil, through a process called hydrogenation.



0コメント

  • 1000 / 1000